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Reptation of a polymer chain by conformal transitions in the entangled regime
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We study a model for reptation, where motion along the contour of the chain is due to displacements
caused by singlet- or double-bond rotations (local jumps) followed by rearrangements of the neighboring
units, rather than “kink motion.” We recover the usual scaling behavior of the diffusion coefficients and
relaxation times with the chain mass. Moreover, the effective activation energy that is found from the
local jump model for translational motion of the chain center of mass compares favorably with experi-
ment and is independent of the molecular weight for large enough chains.

PACS number(s): 36.20.Ey, 05.40.+j, 05.60.+w
I. INTRODUCTION

Dynamical properties of flexible linear polymers are
still poorly understood. In the entangled regime the rep-
tation concept [1-3] is the most successful in describing
the dynamical behavior of a single chain. The reptation
model is used for representing the low-frequency motions
of a chain in a fluid of entangled chains, neglecting rapid
relaxation processes that are attributed to local confor-
mal transitions of the backbone. Within the reptation
model, a flexible linear polymer chain composed of N
links diffuses via a slithering motion of the chain along its
contour, as shown in Fig. 1, through an effective tube
whose walls are formed by sections of other chains.
Motion of the chain along its contour has been pictured
as due to the random motion along the chain contour of
“kinks,” or defects, where a certain length of chain is
“stored” [1,4].

Helfand and collaborators [5-9] have studied the
kinetics of conformational transitions in chain molecules,
and they find that single-bond rotations followed by the
compensating rearrangement of neighboring units are
predominantly responsible for local motions. Such mod-
els have also been considered by Erman and co-workers
[10]. In this paper, we investigate single- and double-
bond transitions as a possible mechanism for reptation in
the entanglement regime. This is a slightly modified mi-
croscopic picture for reptation, where local conforma-
tions, which may be single- or double-bond transitions,
are constrained by the entanglements and give rise only

FIG. 1. The chain moves to the right, and a certain portion
(A4,B) of the original tube disappears; a new part of the tube
(C, D) is created.
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to a slithering motion along the chain.

In Sec. II we compute the curvilinear diffusion
coefficient D, ;. and the translation diffusion coefficient
for the polymer center of mass D, in terms of the poly-
mer mass and the probability per unit time for single-
bond transitions. We recover the scaling results of de
Gennes [1] and Doi and Edwards [2,3] for the depen-
dence of these quantities and of the renewal time on the
polymer mass. A comparison with experimentally ob-
tained activation energies leads us to construct, in Sec.
ITI, a model involving two rotameric transitions bracket-
ing chain segments of arbitrary size. The effective activa-
tion energies found in this way can be much larger than
the monomer activation energies and are therefore more
in line with those found experimentally. Moreover, a
possible source for deviation from the Arrhenius form for
the transition rates and the temperature dependence of
these effective activation energies is indicated.

II. REPTATION VIA SINGLE-BOND TRANSITIONS

We consider the following model for diffusion by repta-
tion.

(a) The mobile links belong to very long chains (the end
effects are neglected).

(b) A single-bond rotational transition takes place at a
given time (in Fig. 2, the transition takes place at the
bond I;). This transition affects the position of the other
links so that the direction of their displacements along
the contour is random.

(c) The transition affects only a contour S of finite
length along either side of I,. The parts of the chain
beyond S are referred to as the tails. A transition takes
place without any rearrangement of the tails.

(d) For a rotameric transition, the root mean square of
the displacements along the chain contour averaged over
the affected links is taken to be a constant, b. At a given
temperature, a single-bond transition rate is expressed in
terms of the Boltzmann factor as

p=vge E/kBT’ n
where v, is the intrinsic frequency of molecular vibration,
kp is the Boltzmann constant, T is the temperature, and
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FIG. 2. A rotameric transition of the I, bond changes the
conformation of the contour from the solid line to the dashed
line between points K and L. We shall denote the part of the
chain between points K and L by the contour S. The vector for
the kth bond is shown as I, (0) at the time O and as I, (¢) at z. In
the figure x; _, and x; 4, are the displacement vectors of I; _,
and I, ;,th bonds, respectively. The direction of the displace-
ment vectors x,; of the bond are random along the contour S.

E is the transition activation energy. The average num-
ber of single-bond transitions along a chain composed of
N links, during a time ¢, is given by

—E/kyT

Yy=tNwvge )

If we assume this number to be small in comparison with
N, the displacements caused by each transition are
confined to nonoverlapping contours S. Then Zj, the
number of links that are displaced within a time ¢, is on
the average

~E/kyT

ZN:tesaN'Voe (3)

Here, & stands for the average number of links in the
contour S affected by a single-bond transition. The direc-
tion of a displacement x, in curvilinear coordinates along
the chain contour is random (see Fig. 2). We take each
monomer mass to be m, and the chain mass to be
M =mN.

The average displacement of the center of mass of the
chain within a time ¢ is, of course, zero. The mean square
value of the displacement of the center of mass along the
contour is

(x2 )=L<ZEN ZEkax,>=£2—ZN , 4)
NP \ENS N?
with N=M /m, and where
(xpx; ) =b%y,; .

Substitution of Eq. (3) into Eq. (4) yields a relation be-
tween the chain displacement in curvilinear coordinates
along the chain contour, the chain length, the tempera-
ture, and the transition activation energy, viz.,

2
_ b8V —psyr
= € .

(xZ.) N (5)
Fick’s law for diffusion gives
(X*)=Drt . (6)

Comparing Egs. (5) and (6), we may write down the tube
diffusion coefficient,

2
b*vo§ —EskyT
e
N

Dtubc = ™
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We can find the renewal time 7, if we set
D7, =(Na)* . (8)

The right-hand side is the square of the contour length,
with a being the bond length. Then from Egs. (7) and
(8),
_ N3%a? E/kyr
T,=—5 e .
b Voesb

%

This result is quite striking because it incorporates the de
Gennes scaling result 7, ~ N3 [11], as well as the tempera-
ture dependence of the relaxation time. For a Gaussian
walk of N steps with step size @, one would have for the
mean square displacement (X2?)=Na? The translation
diffusion coefficient D,, =Na?/7, is then

_ bvS —E/kgT
=———¢ .
tr N2
Equation (10) is in the Arrhenius form and includes the
de Gennes scaling result for the translational diffusion
coefficient [12] D,,~N ~2.
The diffusion activation energy per mole is defined as
olnD,,

E e =—Nokp 3L/T) ’ an
where N, is Avogadro’s number. From Egs. (10) and (11)
one finds E ;=NyE, the single-bond transition activa-
tion energy per mole. If one measures D, experimentally
as a function of 7, then one can obtain the diffusion ac-
tivation energy E g s by plotting InD,. vs 1/T [13,14].
The E 4 found in this way turns out to be much larger
than NyE [15-17]. This leads us to construct the
double-bond transition model for reptation, which we
now proceed to do in the next section.

(10)

II1. “LOCAL JUMP” MODEL

In this model, instead of only single-bond transitions,
both double- and single-bond transitions are considered,
and these types of transitions are called local jumps.
Shown in Fig. 3 is a local jump caused by two rotameric
transitions at the links labeled T and U. The part of the
chain between T and U flips over, and the monomers, re-
spectively, on the left and right of T and U get slightly
rearranged. Let a be the number of links in the part of
the chain between T and U that makes the jump. We
have assumed that a local jump of length a affects only a
finite contour of length P, on either side of it. Note that
crankshaft [18] motion is only a special kind of double-
bond transition. The number of links that flip over be-
tween two rotating bonds is variable and is limited by N,,
the number of links between two entanglement points.
On a chain of length N, the average number of local
jumps involving «a links within time ¢ at a given tempera-
ture T is

—E_/kpT
Y,=tNAge <2,

Here E, is the activation energy of a local jump involv-
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FIG. 3. A double-bond transition of the chain between T and U changes the conformation of the contour from the solid line to the
dashed line between points C and D. We shall denote by the contour P, the part of the chain between points C and D. The direction
of the displacement vectors x; of the links are random along the contour P,,.

ing a links, and A4, is a proportionality constant with di-
mensions of inverse time. The total number of links that
are displaced within a time ¢ as a result of local jump
transitions involving «a links is, on the average,

—E,/kyT

Z,=NtP, A,e (12)

After a local jump involving a links, the root mean
square of the displacements along the chain contour aver-
aged over the affected links is taken to be c¢,. The aver-
age displacement of the center of mass of the chain along
its contour within a time ¢ is

z

a

2 xj

i=1

>=0. (13)

N,
-1/
<‘ch.m. >_ M<a§1m

Here we have summed over contributions from local
jumps of different length a. The mean square value of the
displacement of the center of mass is

2
> . (14)

Here the brackets stand for an average over all realiza-
tions of local jumps and the displacements they cause on
either side of them. The displacements along the chain
contour are again statistically independent,

(xxF)=c28,8,5, (15)

Ne 4 a

2 X

a=1i=1

(x2,, >=7V‘—2<

and therefore,
1
(Xﬁ‘m_)=Fzzac?, , (16)
a=1

which, upon substituting for Z, from Eq. (12), yields

N,

¢ —E_/kgT
(X2, )=r S cZP dge /T

=1

The tube diffusion coefficient in curvilinear coordinates
along the chain contour is then found from Fick’s Law
[Eq. (6)] to be

—E,/kgT

_1 &,
Do N > coP Aye (17)
=1

We may find the renewal time, as in the previous model,
from Egs. (8) and (17) to be

3.2
= Na . (18)

Yo, —E,/kgT
2 caPaAae
=1

Tr

The translation diffusion coefficient is therefore

N, _
Dy=— 3 2P A e FalaT (19)
N a=1
From Egs. (11) and (19) we find the diffusion activation
energy per mole of the polymer chain as
Ne
Ny > P,ALE e
a=1
N,

2 PyAge
a=1

—E, /kgT

Egg= =N{E), (20)

—E,/kyT

where the brackets indicate an average over the length of
the segment involved in the double-bond transition. Note
that the sum extends to N,, the entanglement length.

Since we expect the activation energies E, to be quite
large for jump transitions involving many links, the
Boltzmann weights of the terms with relatively large o
appearing in the sums in Eq. (20) are negligibly small.
Thus the sums are effectively truncated at some a,, (T),
possibly much smaller than N,. This means that the ap-
parent activation energy per mole for the diffusing poly-
mer chains in an entangled regime does not depend on
the chain length, if this length is greater than the average
entanglement length; it depends weakly on the chain
length N, between two entanglement points and strongly
on the temperature. This result is supported by experi-
mental findings [19], which indicate that the apparent
diffusion activation energy per mole is independent of the
chain length for long chains and can be fit by an empiri-
cal formula of the type

AT?
E 4ig BT’ 1)

where 4 and B are constants that do not depend on 7.

We can understand this temperature dependence on
the basis of Eq. (19). Let us assume E,=E,a”* and that
P, ~exp(a’), say. Also let 4, and ¢, depend weakly on

" a. Then, going to the continuum limit and performing a

saddle point approximation to the integral over a, one
finds



=y —x)/x]a}
Dtr~ NzcaoAao ’
where
1 p—
XEO /(y —x)
a =
0 ykgT

E 4 can now be computed from Eq. (11),
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E y/(y—x) x/(y —x)
Ege=Nokp | - (22)
diff 0™*B kB yT
NATX/(X*,V) .

The empirical result in Eq. (21) calls for the x =2y. Fi-
nally, let us remark that we expect x to be equal to the
fractal dimension of the entanglement network, since E,
should grow with the number of links that have to be dis-
placed within the volume swept out by a local jump of
length a.
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